Fatigue in Parkinson's disease

Abhimanyu Mahajan, MD, MHS Assistant Professor of Neurological Sciences Rush University Medical Center Chicago, IL

Financial disclosures

Parkinson's Foundation

Sunflower Parkinson's disease Foundation

Dystonia Medical Research Foundation

Why is understanding fatigue important?

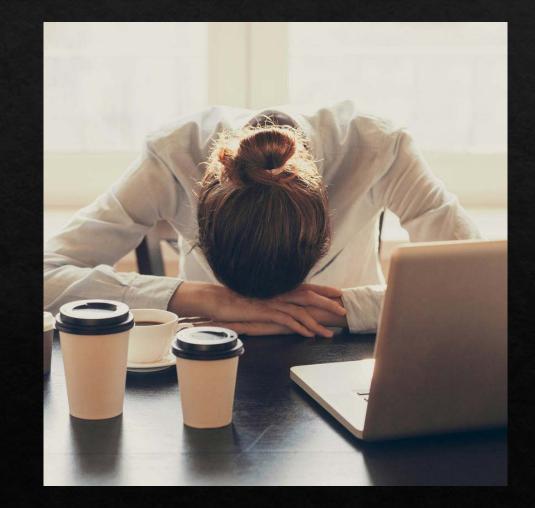
May manifest even during premotor stages of disease and once present, may often persist or even worsen over time

Leads to limited working hours, participation in social activities, hobbies and exercise, which have a negative collective impact on patients' quality of life

Described as a sense of exhaustion or significantly diminished energy level or an increased perception of effort disproportionate to attempted activities

Easy to understand, tough to conceptualize and measure. Heterogenous measurements.

PRIAMO study on over 1000 patients with PD, fatigue in 58% (most common non-motor symptom)


Sicilliano et al. Mov Dis. 2018, Barone et al. Mov Dis. 2009

What is fatigue in PD?

Thought to be an intrinsic symptom or independent manifestation of PD

While it appears to worsen with underlying disease progression, it may not correlate with duration or motor disability.

Important to differentiate subjective perception of fatigue and task-performance fatigability

What is fatigue in PD?

Involvement of both serotonergic and dopaminergic circuits has been proposed.

Substantial overlap with depression, anxiety, sleep issues and apathy.

As such, an idea of primary and secondary fatigue has been proposed.

Fatigue accompanying MOTOR-OFF

People report not feeling "energized"

Reward feedback: ease of completing a task

Optimal dose of dopamine replacement is key

Fatigue may present as an OFF phenomenon that may mirror motor symptoms

Fatigue accompanying MOTOR-OFF

Difficult to compare dopaminergic drugs due to heterogeneity in outcome measures, drugs and dosages, duration of treatment, and control of other factors, such as depression.

Levodopa may reduce fatigue, although the degree of benefit varies, depending on the severity of PD. It may help taskperformance fatigue but not otherwise.

Data on DA agonists in modulating fatigue associated with PD are not consistent. Benefit reported may be due to improvement in other motor and non-motor features.

	TABLE 1. Outcomes studies							
Study	Fatigue Scale	Intervention	Pre Control Mean (SD)	Pre Experimental Mean (SD)	Post Control Mean (SD)	Post Experimental Mean (SD)	P-Value	Effect Size (CI)
Amphetamines								
Lou et al. (2009) ¹¹	Multidimensional fatique inventory ^b	Modafinil vs placebo	63.5 (4.8)	55.8 (5.1)	61.0 (4.8)	54.5 (5.12)	>0.05	-0.31 (-2.24; -0.27)
(2003) Medonca et al. (2007) ¹²	Fatigue Severity Scale ^b	Methylphenidate vs placebo	45.1 (6.5)	43.8 (6.7)	43.2 (8.4)	37.3 (9.5)	<0.05	-0.83 (-0.11; -0.68)
Medonca et al. (2007) ^{12a}	Multidimensional fatigue inventory ^b	Methylphenidate vs placebo	51.7 (16.1)	51.0 (10.8)	48.5 (16.5)	42.6 (15.6)	<0.05	-0.37 (-1.04; 0.32)
Ondo et al. (2005) ¹³	Fatigue Severity Scale	Modafinil vs placebo	36.8 (12.8)	37.6 (14.1)	37.8 (10.8)	36.8 (12.7)	>0.05	-0.08 (-0.73; 0.56)
(2005) Tyne et al. (2010) ¹⁶	Fatigue Severity Scale ^b	Modafinil vs	5.4 (3) ^c	6.1 (2) ^c	5.1 (3) ^c	5.7 (3) ^c	>0.05	Not available
Dopamines								
Abe et al. (2001) ⁹	Fatigue Severity Questionnaire ^b	Pergolide mesilate vs	4.8 (0.9)	5.1 (0.7)	4.7 (0.8)	4.4 (0.55)	<0.05	0.31 (-0.33; 0.91)
Drijgers et al. (2012) ^{18a}	Profile of Mood Status (Fatigue	bromocriptine Pramipexole vs placebo	78.0 (10.0)	75.6 (11.6)	70.7 (13.9)	62.6 (16.3)	<0.05	-0.48 (-1.06; 0.11)
Drijgers et al. (2012) ^{18a}	subscale) Profile of Mood Status (Fatigue	Pramipexole vs mehtylphenidate	77.1 (10.1)	75.6 (11.6)	73.0 (13.4)	62.6 (16.3)	<0.05	-0.82 (-1.41; -0.21)
Rios Romenets and Creti (2013) ^{19a}	subscale) Fatigue Severity Scale	Doxepin vs placebo			0 (5.8) ^d	-17.7 (14.3) ^d	<0.05	-1.62 (-2.78; -0.22)
(2013) Stocchi (2013) ^{17a}	Parkinson Fatigue Scale ^b	Rasagiline 1mg vs placebo			0.17 (0.03) ^d	0.03 (0.04) ^d	<0.05	-0.14 (-0.23; -0.05)
Stocchi (2013) ^{17a}	Parkinson Fatigue Scale ^b				0.17 (0.03) ^d	-0.02 (0.04) ^d	<0.05	-0.19 (-0.28; -0.10)
Schifitto et al. (2011) ^a	Fatigue Severity Scale ^b	Levodopa 150 mg vs placebo			0.75 (1.39) ^d	0.30 (1.08) ^d	>0.05	-0.36 (-0.66; -0.06)
Schifitto et al. (2011) ^a	Fatigue Severity Scale ^b	Levodopa 300 mg vs placebo			0.75 (1.39) ^d	0.36 (1.11) ^d	>0.05	-0.31 (-0.61; 0.00)
Schifitto et al. (2011) ^a	Fatigue Severity Scale ^b	Levodopa 600 mg vs placebo			0.75 (1.39) ^d	0.33 (1.04) ^d	>0.05	-0.34 (-0.64; -0.04)
Leentjens et al. (2006) ¹⁰	Profile of Mood Satus	Acute tryptophan depletion vs placebo	59 (14.0)	58 (13.7)	56 (15.2)	65 (15.4)	>0.05	0.59 (-0.16; 1.30)
Ondo et al. (2011) ¹⁴	Fatigue Severity Scale	Memantine vs placebo	37.2 (14.3)	37.6 (14.2)	35.7 (16.9)	37.4 (17.7)	>0.05	-0.10 (-0.75; 0.56)
Postuma et al. (2013) ²¹ Behavioral	Fatigue Severity Scale	Caffeine vs placebo				-2.85 (-7.73, 2.06) ^e	>0.05	-2.85 (-7.73; 2.06)
Ghahari et al. (2010) ²⁰	Fatigue Impact Scale ^b	Behavioural program vs	83.5 (46.0)	77.3 (47.2)	81.5 (71.4)	72.3 (45.6)	>0.05	0.48 (-1.25; 2.06)
Rios Romenets et al. (2013) ^{19a}	Fatigue Severity Scale	control Cognitive behavioural therapy vs control			0 (5.8) ^d	-0.5 (6.2) ^d	>0.05	-0.08 (-1.21; 1.06)
Winward et al. (2012) ²	Fatigue Severity Scale ^b	Exercise vs control	4.15 (1.49)	3.9 (1.41)	3.72 (1.46)	3.5 (1.30)	>0.05	-0.11 (-0.76; 0.54)

Fatigue and night-time sleep

Difficulty falling asleep

Leg cramps, difficulty rolling over, frequency/ noctiuria, difficulty going back to sleep

Snoring, apneic spells, early morning bifrontal headaches, day-time fatigue or irritability

Movement in sleep

Table 1. Problems falling asleep

Not sleepy when lights go off Nursing home, early bedtime Caretaker, early bedtime Out of phase with spouse, family Daytime naps Medication effect (alcohol; stimulants; SSRI antidepressants) Discomfort Cannot find comfortable position Annoying tremor Anxiety Restless legs syndrome Depression Akathisia Illusions, hallucinations Delusions Back pain

Painful leg cramps

Bladder Anxiety Depression Sleep apnea Tremors during sleep Nightmares REM sleep behavior disorder Vocalizations during sleep Periodic leg movements Respiratory disorders due to PD Inability to turn over/difficulty getting in/out of bed Fragmentary nocturnal myoclonus

Table 2. Problems maintaining sleep

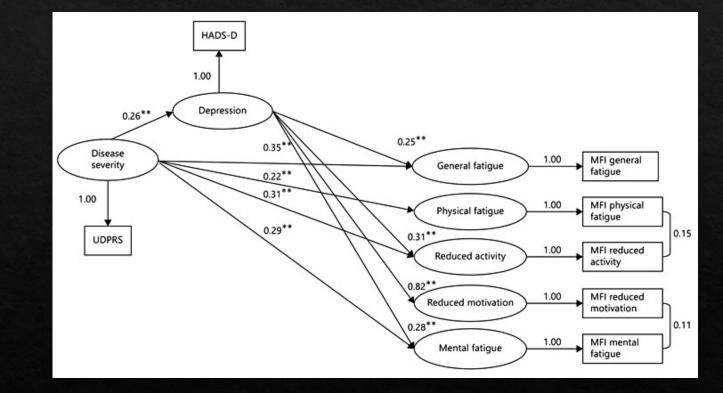
Sleep apnea and PD

Anecdotally, OSA and PD are common in the same age group. Mixed evidence about co-prevalence in literature

OSA has been proposed as a risk factor for PD (aHR 1.84), especially with insomnia (aHR 1.97)

OSA associated with worse motor and cognitive symptoms in PD

CPAP use may improve motor features in PD


Chen et al. J Sleep Res. 2015, Meng et al. PRD 2020, Elfil et al. Mov. Dis. 2021

Fatigue and mood

Fatigue more common in people with depression across many disorders

The greater the depression and/ or disease severity, the greater the fatigue

Treatment of depression improved general fatigue, mental fatigue, motivation and activity but not physical fatigue

Orthostatic hypotension in PD

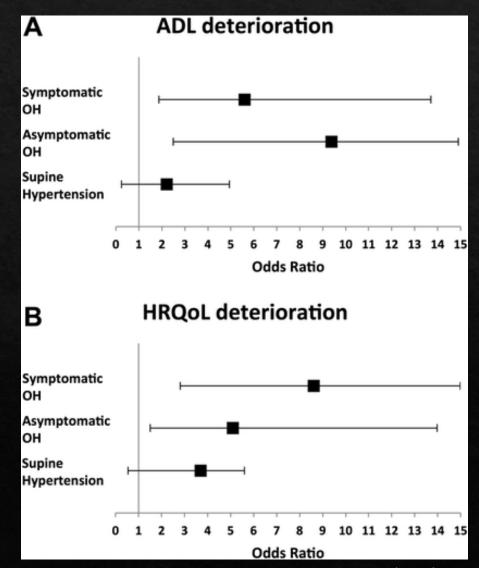
Defined as a reduction of systolic BP ≥20 mm Hg or diastolic blood pressure ≥ 10 mm Hg within 3 minutes of standing up

Updated in 2011 to include a fall in SBP of \geq 30 mm Hg for patients with an elevated baseline BP including those with supine hypertension (SH)

Prevalence of orthostatic hypotension in certain settings

Setting	Number	Age (years)	Prevalence (%)	Reference
Nursing home	250	61-91	11 .	Rodstein and Zeman ^{$\underline{29}$} (1957)
Outpatients	494	≥65	24	Caird et al. ^{<u>30</u>} (1973)
VA geriatric unit	319	50-99	10.7	Myers et al. $\frac{31}{10}$ (1978)
Outpatients	186	≥65	22	MacLennan et al. $\frac{32}{1980}$
Geriatric unit	272	Mean age 83	10	Lennox and Williams $\frac{33}{1980}$ (1980)
Geriatric unit	247	≥60	33	Palmer ^{<u>34</u>} (1983)
Outpatients	300	Mean age 70	6.4	Mader et al. $\frac{35}{1987}$ (1987)

OH and PD


131 patients prospectively followed over 12 months

Orthostatic Hypotension Symptoms Assessment (OHSA) total score, worsened by 20% over 12 months

Overall increase in OH prevalence from 31.1% to 46.7%

Independently associated with deterioration in ADLs and health-related QoL

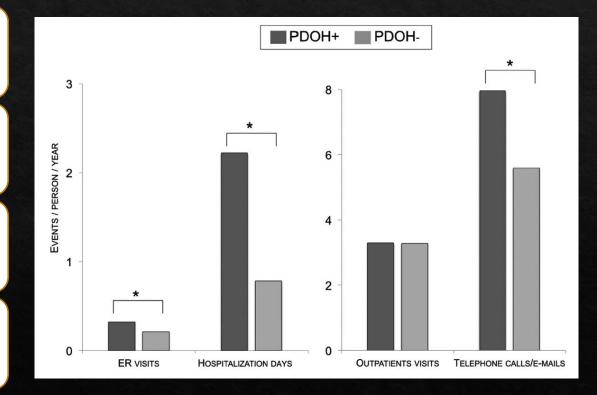
Regardless of symptoms, affected ADLs, HR-QoL and falls

Merola et al. Mov Dis. 2018

OH in PD: impact on cost of care

A total of 317 PD patients

29.3% classified as PDOH+


30.2 ± 11.0 months

247 hospitalizations, 170 ER visits, 2386 outpatient evaluations, and 4747 telephone calls/e-mails. OH associated with more hospitalization days (+285%), ER visits (+152%), and telephone calls/e-mails (+142%).

OH led to 2.5-fold higher health care related cost.

OH causes an extra cost increase of \$15,000 per patient per year.

The higher health care burden is represented by neuropsychiatric problems and falls.

OH and fatigue in PD

Cardiac sympathetic nerves have an important role in increasing the heart rate and blood pressure during exercise

Autonomic dysfunction, including cardiac sympathetic denervation, associated with fatigue in PD

Clinical manifestations may not be obvious in patients with PD

Name:				Date o	fbirt	:h:						height: weight:		
Date	Fluid intake	Measurements	In the morning (before breakfast)			Symptoms *	After lunch			Symptoms *	In the evening (before going to bed)			1
	(liters)		systolic	diastolic	HR	Sym 1	systolic	diastolic	HR	Sym	systolic	diastolic	HR	
		5' min supine												Ι
	_'	3' min standing												I
		5' min supine								\square				T
	_' '	3' min standing												T
		5' min supine												T
	_' '	3' min standing								Π				1
		5' min supine												T
	_' `	3' min standing												T
		5' min supine												T
	_' '	3' min standing												Ī
		5' min supine												Ī
	_' `	3' min standing												Ī
		5' min supine												Ī
	_' '	3' min standing												1

TREATMENT

1. Correct non-neurogenic causes of OH and exacerbating factors

2. Lifestyle measures

3. Non-pharmacological measures

4. Pharmacological measures

* Midodrine 3x 2.5-10 mg/d

 Fludrocortisone 0.1-0.3 mg/d * Droxidopa 3x 100-600 mg/d * In anemic patients: erythropoletin

5. Treatment of post-prandial hypotension Before main meals:

- * Acarbose 50-100 mg
- . Octreotide 1 µg/kg of body weight s.c.
- + Caffeine 250 mg

TREATMENT

1. Preventive measures

Avoid:

- the supine position during daytime
- offending agents (NSAIDs, SNRI, domperidone)
- long acting pressor agents
- bolus water drinking near bedtime

2. Non-pharmacological measures

- * 10-20" head-up tilt over night
- · Small snack at bedtime
- * If alcohol, small amount at bedtime

3. Pharmacological measures

Bedtime administration of:

 Losartan 50 mg
Eplerenone 50 mg
Sildenafil 25 mg Clonidine 0.1 mg
Nitroglycerin patch 0.1 mg/h

Management of primary fatigue

Amphetamines: some evidence for methylphenidate?

Exercise, CBT, Caffeine: no consistent benefit

One meta-analysis: no drug or non-drug approach works for everyone

Another meta-analysis: Doxepin and rasagiline may work (is it primary?)

Anecdotally, naps for the win!

			TABLE 1.	Outcomes stu	idies		
Study	Fatigue Scale	Intervention	Pre Control Mean (SD)	Pre Experimental Mean (SD)	Post Control Mean (SD)	Post Experimental Mean (SD)	P-Value Effect Size (CI)
Amphetamines Lou et al. (2009) ¹¹	Multidimensional fatigue inventory ^b	Modafinil vs placebo	63.5 (4.8)	55.8 (5.1)	61.0 (4.8)	54.5 (5.12)	>0.05 -0.31 (-2.24; -0.27)
Medonca et al. (2007) ¹²	Fatigue Severity Scale ^b	Methylphenidate vs placebo	45.1 (6.5)	43.8 (6.7)	43.2 (8.4)	37.3 (9.5)	<0.05 -0.83 (-0.11; -0.68)
Medonca et al. (2007) ^{12a}	Multidimensional fatigue inventory ^b	Methylphenidate vs placebo	51.7 (16.1)	51.0 (10.8)	48.5 (16.5)	42.6 (15.6)	<0.05 -0.37 (-1.04; 0.32)
Ondo et al. (2005) ¹³	Fatigue Severity Scale	Modafinil vs placebo	36.8 (12.8)	37.6 (14.1)	37.8 (10.8)	36.8 (12.7)	>0.05 -0.08 (-0.73; 0.56)
Tyne et al. (2010) ¹⁶	Fatigue Severity Scale ^b	Modafinil vs placebo	5.4 (3) ^c	6.1 (2) ^c	5.1 (3) ^c	5.7 (3) ^c	>0.05 Not available
Abe et al. (2001) ⁹	Fatigue Severity Questionnaire ^b	Pergolide mesilate vs bromocriptine	4.8 (0.9)	5.1 (0.7)	4.7 (0.8)	4.4 (0.55)	<0.05 0.31 (-0.33; 0.91)
Drijgers et al. (2012) ^{18a}	Profile of Mood Status (Fatigue subscale)	Pramipexole vs placebo	78.0 (10.0)	75.6 (11.6)	70.7 (13.9)	62.6 (16.3)	<0.05 -0.48 (-1.06; 0.11)
Drijgers et al. (2012) ^{18a}	Profile of Mood Status (Fatigue subscale)	Pramipexole vs mehtylphenidate	77.1 (10.1)	75.6 (11.6)	73.0 (13.4)	62.6 (16.3)	<0.05 -0.82 (-1.41; -0.21)
Rios Romenets and Creti (2013) ^{19a}	Fatigue Severity Scale	Doxepin vs placebo			0 (5.8) ^d	-17.7 (14.3) ^d	<0.05 -1.62 (-2.78; -0.22)
Stocchi (2013) ^{17a}	Parkinson Fatigue Scale ^b	Rasagiline 1mg vs placebo			0.17 (0.03) ^d	0.03 (0.04) ^d	<0.05 -0.14 (-0.23; -0.05)
Stocchi (2013) ^{17a}	Parkinson Fatigue Scale ^b	Rasagiline 2 mg vs placebo			0.17 (0.03) ^d	-0.02 (0.04) ^d	<0.05 -0.19 (-0.28; -0.10)
Schifitto et al. (2011) ^a	Fatigue Severity Scale ^b	Levodopa 150 mg vs placebo			0.75 (1.39) ^d	0.30 (1.08) ^d	>0.05 -0.36 (-0.66; -0.06)
Schifitto et al. (2011) ^a	Fatigue Severity Scale ^b	Levodopa 300 mg vs placebo			0.75 (1.39) ^d	0.36 (1.11) ^d	>0.05 -0.31 (-0.61; 0.00)
Schifitto et al. (2011) ^a Other drugs	Fatigue Severity Scale ^b	Levodopa 600 mg vs placebo			0.75 (1.39) ^d	0.33 (1.04) ^d	>0.05 -0.34 (-0.64; -0.04)
Leentjens et al. (2006) ¹⁰	Profile of Mood Satus	Acute tryptophan depletion vs	59 (14.0)	58 (13.7)	56 (15.2)	65 (15.4)	>0.05 0.59 (-0.16; 1.30)
Ondo et al. (2011) ¹⁴	Fatigue Severity Scale	Memantine vs placebo	37.2 (14.3)	37.6 (14.2)	35.7 (16.9)	37.4 (17.7)	>0.05 -0.10 (-0.75; 0.56)
Postuma et al. (2013) ²¹ Behavioral	Fatigue Severity Scale	Caffeine vs placebo			13	-2.85 (-7.73, 2.06) ^e	>0.05 -2.85 (-7.73; 2.06)
Ghahari et al. (2010) ²⁰	Fatigue Impact Scale ^b	Behavioural program vs control	83.5 (46.0)	77.3 (47.2)	81.5 (71.4)	72.3 (45.6)	>0.05 0.48 (-1.25; 2.06)
Rios Romenets et al. (2013) ^{19a}	Fatigue Severity Scale	Cognitive behavioural therapy vs control			0 (5.8) ^d	-0.5 (6.2) ^d	>0.05 -0.08 (-1.21; 1.06)
Winward et al. (2012) ²	Fatigue Severity Scale ^b	Exercise vs control	4.15 (1.49)	3.9 (1.41)	3.72 (1.46)	3.5 (1.30)	>0.05 -0.11 (-0.76; 0.54)

Medications causing fatigue

Peripheral	Central						
	Decreased Excitatory Activity	Increased Inhibitory Activity					
Aminoglycosides	Anticholinergics	Anesthetics					
Antiarrhythmics	Anticonvulsants	Antiemetics					
Antidepressants	Antipsychotics	Barbiturates					
Antiepileptics	Sympathomimetics	Benzodiazepines					
Antifungals		opioids					
Antigout agents		Skeletal muscle relaxants					
Antihelmintics							
Antineoplastics							
Antipsychotics							
Antivirals							
Biologic agents							
Carbonic anhydrase inhibitors							
DMARDs							
Neuromuscular blocking agents							

Approach to management

Table 1

Possible Algorithm for the Treatment of Fatigue in Parkinson's Disease

1. Screening and identifying fatigue

2. Is fatigue primary or secondary? Identify contributing treatable factors (depression, anxiety, apathy, sleep alterations, orthostatic hypotension, anemia...)

- 3. Explain nature of fatigue to a patient and caregiver
- 4. Nonpharmacological treatment like physical exercise^a

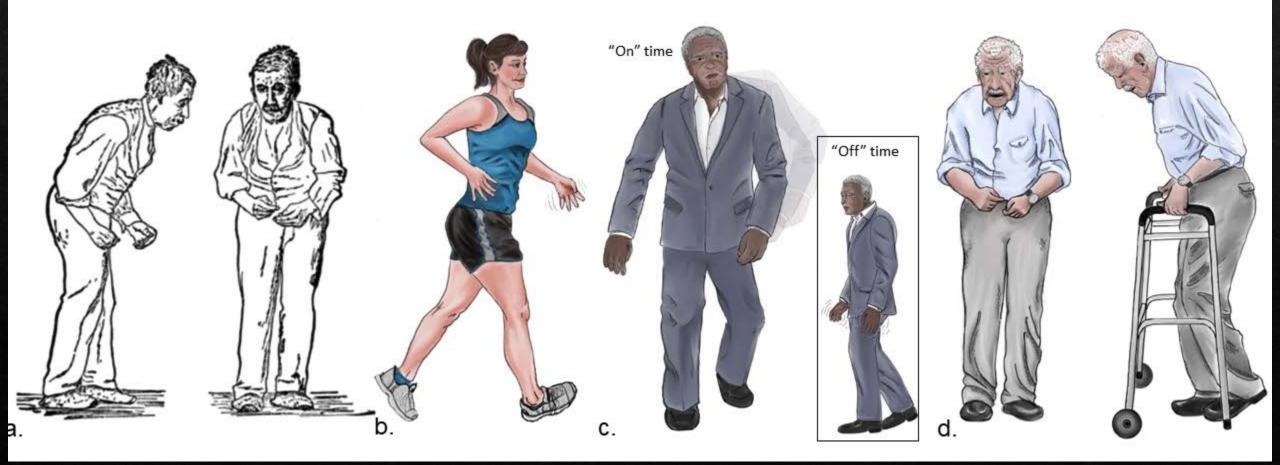
5. Medication^a

a. Methylphenidate (level C)

b. Dopaminergic drugs: dopaminergic agonists (pramipexole, rotigotine, rasagiline), optimization of levodopa

c. Antidepressant drugs (nortryptyline, doxepin, SSRI...)

d. Modafinil



- fatigue
- sleep disorders
- apathy
- --- depression
- anxiety

Motor and Non-Motor Parkinson Disease Symptoms

Fewer

Tremor, rigidity, bradykinesia, dystonia and/or gait issues Autonomic, psychiatric, and/or cognitive symptoms

More