Genotype-phenotype correlation studies and tailored treatment for the most common monogenic epilepsies:

SCN1A

Dr Andreas Brunklaus MD
Consultant Paediatric Neurologist
Royal Hospital for Children, Glasgow
Honorary Clinical Senior Lecturer
Institute of Health and Wellbeing, University of Glasgow
Declaration of Interest

- I have received honoraria for speaking at educational symposia and attending advisory boards from Biocodex, Zogenix, GW Pharma, Nutricia and Encoded Therapeutics.

- My institution has received funding from GW Pharma and Zogenix for undertaking research trials.
SCN1A associated phenotypes

Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+
A Escayg, B T MacDonald, M H Meisler, S Baulac, G Huberfeld, I An-Gourfinkel, A Brice, E LeGuern, B Moulard, D Chaigne, C Buresi, A Malafosse

SCN1A associated phenotypes

Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+

A Escayg, B T MacDonald, M H Meisler, S Baulac, G Huberfeld, I An-Gourfinkel, A Brice, E LeGuern, B Moulard, D Chaigne, C Buresi, A Malafosse

De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy

Lieve Claes, Jurgen Del-Favero, Berten Ceulemans, Lieven Lagae, Christine Van Broeckhoven, and Peter De Jonghe

1Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Antwerp, and 2Department of Neurology, University Hospital Antwerp, Antwerp; 3Epilepsy Center for Children and Youth, Pulderbos, Belgium; and 4Department of Child Neurology, University Hospital Gasthuisberg, Leuven, Belgium

SCN1A associated phenotypes

Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+
A Escayg, B T MacDonald, M H Meisler, S Baulac, G Huberfeld, I An-Gourfinkel, A Brice, E LeGuern, B Moulard, D Chaigne, C Buresi, A Malafosse

De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy
Lieve Claes, Jurgen Del-Favero, Berten Ceulemans, Lieven Lagae, Christine Van Broeckhoven, and Peter De Jonghe

Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine
Martin Dichgans, Tobias Freilinger, Gertrud Eckstein, Elena Babini, Bettina Lorenz-Depiereux, Saskia Biskup, Michel D Ferrari, Jurgen Herzog, Ann M J M van den Maagdenberg, Michael Pusch, Tim M Strom
SCN1A associated phenotypes

Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+
A Escayg, B T MacDonald, M H Meisler, S Baulac, G Huberfeld, I An-Gourfinkel, A Brice, E LeGuern, B Mouland, D Chaigne, C Buresi, A Malafosse

De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy
Lieve Claes, Jurgen Del-Favero, Berten Ceulemans, Lieven Lagae, Christine Van Broeckhoven, and Peter De Jonghe

Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine
Martin Dichgans, Tobias Freilingier, Gertrud Eckstein, Elena Babini, Bettina Lorenz-Depiereux, Saskia Biskup, Michel D Ann M J M van den Maagdenberg, Michael Pusch, Tim M Strom

Not all SCN1A epileptic encephalopathies are Dravet syndrome
Early profound Thr226Met phenotype
Lynette G. Sadleir,

University of Glasgow

Dravet Syndrome

► Onset in first year of life with febrile seizures
► Prolonged unilateral or generalized clonic seizures
► Other seizure types evolve by 1-4 years
► Presumed normal early development
► Psychomotor slowing > 1 year
► Developmental & epileptic encephalopathy
Spectrum of \textit{SCN1A} related epilepsies

\begin{itemize}
 \item \underline{Mild} \quad \text{GEFS+} \quad \text{FS+}
 \item \underline{Severe} \quad \text{Dravet syndrome}
\end{itemize}
241 individuals (1 to 42 years)

Analysis of UK birth cohort from 2003 – 2007 (n=88)

Incidence of Dravet syndrome at least 1 per 40,900
– now 1 per 15,000

Incidence of SCN1A related epilepsy at least 1 per 12,200
Sodium channel alpha 1 subunit (SCN1A)

- Voltage-gated sodium channel
- Widespread expression in CNS
- $\text{Na}_V1.1$ channels are primarily localized in cell bodies
- Role in the generation of action potentials
- $\text{Na}_V1.1$ expression is first detectable postnatally and increases thereafter
Sodium channel alpha 1 subunit (SCN1A)
Dravet syndrome – a channelopathy

Nabbout et al. (2013) Orphanet J Rare Dis.13;8:176
Dravet syndrome – a channelopathy

Nabbout et al. (2013) Orphanet J Rare Dis.13;8:176
Dravet syndrome – a channelopathy

Ogiwara et al. (2007) J Neurosci;27:5903-14

Nabbout et al. (2013) Orphanet J Rare Dis.13;8:176
Dravet syndrome – a channelopathy

Han et al. (2012) Nature; 489:385-90
Nabbout et al. (2013) Orphanet J Rare Dis. 13:8:176
Variant classes

- Missense (49%)
 - ? altered protein function
 - ? phenotype

- Nonsense (17%)
- Frame-shift (18%)
- Splicesite (9%)
- Insert/Deletion (2%)
- Rearrangements (5%)

- Truncating (51%)
 - Loss of protein function
 - Severe phenotype

Phenotypical differences between truncating and missense variants

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Age at seizure onset in months according to mutation type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truncating</td>
</tr>
<tr>
<td></td>
<td>Mean/median age at onset (semi-IQR) No.</td>
</tr>
<tr>
<td>Seizure type</td>
<td>6.0/6.0 (1.5) 125</td>
</tr>
<tr>
<td>First seizure</td>
<td>7.4/6.0 (2.0) 69</td>
</tr>
<tr>
<td>Prolonged seizure</td>
<td>9.5/7.0 (3.5) 71</td>
</tr>
<tr>
<td>Hemiclonic seizure</td>
<td>13.0/7.0 (3.5) 52</td>
</tr>
<tr>
<td>Status epileptic</td>
<td>16.4/12.0 (5.0) 71</td>
</tr>
<tr>
<td>Myoclonic seizure</td>
<td>19.1/15.0 (6.0) 46</td>
</tr>
</tbody>
</table>

Abbreviation: IQR = interquartile range.
^a^b P Value derived using Mann-Whitney U test.
^b Significant.
Impact on rate of cognitive decline
How do missense variants from the general population differ from those found in patients?

gnomAD vs pathogenic missense burden (variants from the general population)

Grey Polymorphisms

Courtesy of Perez-Palma & Lal
How do missense variants from the general population differ from those found in patients?

gnomAD vs pathogenic missense burden (variants from the general population)

Grey Polymorphisms
Blue Disease causing variants

Courtesy of Perez-Palma & Lal
Identification of pathogenic variant enriched regions across genes and gene families

Eduardo Pérez-Palma, 1,2 Patrick May, 3 Sumaiya Iqbal, 4,5 Lisa-Marie Nistroj, 1 Juanjiangmeng Du, 1 Henrique O. Heyne, 4,5,6 Jessica A. Castrillon, 1 Anne O’Donnell-Luria, 4 Peter Nürnberg, 1 Aarno Palotie, 4,5,6 Mark Daly, 4,5,6 and Dennis Lal 1,2,4,5,7

A Missense burden analysis: Voltage-Gated Sodium Channel Family:
Conventional pathogenicity modelling
SCN1A variants from bench to bedside—improved clinical prediction from functional characterization

Andreas Brunklaus1,2,* | Stephanie Schorge3,4,* | Alexander D. Smith5 |
Ismail Ghanty1,2 | Kirsty Stewart6 | Sarah Gardiner5 | Juanjiangmeng Du7 |
Eduardo Pérez-Palma7 | Joseph D. Symonds1,2 | Abby C. Collier5 | Dennis Lal7,8,9,10,11 |
Sameer M. Zuberi1,2

\[\alpha \]

Voltage sensor

- Dravet syndrome (DS)
- DS/GEFS+/FS+
- Familial Hemiplegic Migraine (FHM)
- Early Epileptic Encephalopathy

Out

1234

In

6

D1

- T226M
- L263V
- I227S
- M145T
- G177A
- G177E
- Y426N
- S259R
- R865G
- R859H
- R859C
- H939Q
- M956T
- C959R
- G979R
- T808S
- T875M
- V983A
- N1011I
- W1204R
- V1353L
- T1624P
- P1632S
- R1648C
- R1648H
- A1685V
- A1685D
- M1664K
- M1664K
- I1656M
- R1657C
- L1673W
- T1909I
- Q1923R

D2

- R393H
- Y790C
- R859C
- F902C
- C959R
- G979R
- H939Q
- M956T
- T908S
- R946H
- R946C
- L986F
- A1273V
- M1267I
- V1366I
- Q1489K
- L1649Q
- F1661S
- L1673W
- T1909I
- Q1923R

D3

- Out

1234

In

6

D4

- CO\textsubscript{2}−

- G1749E
- F1765L
- G1674R
- F1808L
- M1852T
- D1866Y

\[\alpha \]
Whole-cell current as a marker of function for missense variants

χ² = 5.071, df = 1, p = 0.024

Clinical Phenotype
GENETIC DISEASE

Predicting functional effects of missense variants in voltage-gated sodium and calcium channels

Henrike O. Heyne¹,²,³,⁴*, David Baez-Nieto³†, Sumaiya Iqbal¹,²,³,⁵†, Duncan S. Palmer¹,²,³†, Andreas Brunklaus⁶,⁷, Patrick May⁸, Epi25 Collaborative, Katrine M. Johannesen⁹,¹⁰, Stephan Lauermann¹¹, Johannes R. Lemke¹², Rikke S. Møller⁹,¹⁰, Eduardo Pérez-Palma¹³,¹⁴, Ute I. Scholl¹⁵,¹⁶, Steffen Syrbe¹⁷, Holger Lerche¹¹, Dennis Lal¹,²,³,¹³,¹⁴,¹⁸, Arthur J. Campbell³,⁵, Hao-Ran Wang³, Jen Pan³, Mark J. Daly¹,²,³,⁴*

Sci Transl Med. 2020 Aug 12;12(556):eaay6848

Copyright © 2020
The Authors, some rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works
Evolution of voltage-gated ion channels

Model of sodium channel disorders

Early-onset seizures
(a) Less inhibition
(b) More excitation

Late-onset seizures and NDDs
(c) Less excitation

Inhibitory n.
Excitatory n.
Corticospinal n.

Brunklaus and Lal, DMCN 2020
Variant location as surrogate for function

Mosaicism of de novo pathogenic SCN1A variants in epilepsy is a frequent phenomenon that correlates with variable phenotypes

Iris M. de Lange¹ | Marco J. Koudijs¹ | Ruben van ’t Slot¹ | Boudewijn Gunning²

Key Points

- Mosaicism is present in 7.5% of symptomatic patients with de novo pathogenic SCN1A variants
- Patients with mosaicism of truncating variants have on average milder phenotypes than patients with heterozygous truncating variants, which makes mosaicism an important modifier in SCN1A-related phenotypes
- Detection of mosaicism has important implications for genetic counseling and can be achieved by deep sequencing of unique reads

Appropriate treatment is important

- Early contraindicated medication use has negative impact on cognitive outcome in Dravet syndrome

Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group
C Chiron, M C Marchand, A Tran, E Rey, P d

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome
Orrin Devinsky, M.D., J. Helen Cross, Ph.D., F.R.C.P.C.H., Linda Laux, M.D., Eric Marsh, M.D., Ian Miller, M.D.,

Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial
Lieven Lagae, Joseph Sullivan, Kelly Knupp, Linda Laux, Tilman Polster

First line
Diagnosis clear and continuing seizures

Second line
(evidence based RCT)

Alternatives for second line

Broad spectrum ASM: Valproate
Valproate + stiripentol +/- clobazam
Or add-on Cannabidiol
Or add-on Fenfluramine (approval conditional)

Ketogenic diet
Clobazam
Topiramate
Bromide
Vagal nerve stimulation

Genotype-phenotype Treatment Considerations

A single-center, retrospective analysis of genotype-phenotype correlations in children with Dravet syndrome

Tracy S Gertler¹, Jeffrey Calhoun², Linda Laux³

► 137 Dravet syndrome patients with pathogenic SCN1A variants subdivided by missense or truncating variant

► Response to antiepileptic therapies did not differ by genotype with regard to medication class.

► Need for prospective natural history data to evaluate treatment effects on seizure burden and development
Future opportunities for precision treatment

1. Viral-delivery: non-AAV
2. Viral-delivery: Two AAV
3. AntagoNAT
4. Antisense oligonucleotide

Ana Mingorance, Dracaena consulting
Acknowledgements

Royal Hospital for Children, Glasgow
Ismael Ghanty
Felix Steckler
Ben Dunwoody
Sameer Zuberi
Joseph Symonds
Kirsty Stewart
Sarah Gardiner

International Collaborators
Broad Institute Harvard & Cleveland clinic, US
Dennis Lal

University of Cologne, Germany
Eduardo Perez

University College London, UK
Stephanie Schorge

Andreas.Brunklaus@nhs.net