<u>Neuro-modulatory Devices in Epilepsy Treatment</u> Approved Alternative Surgical Therapies

Dileep Nair, MD Cleveland Clinic Epilepsy Update & Review

DISCLOSURES:

Grant/Research Support:

- NIH RO1 (RO1NS089212) A Brain Atlast for Mapping Connectivity in Focal Epilepsy
- NIH RO1 (RNS097719A) Nomogram to Predict Seizure Outcome
- NeuroPace Long term Treatment Trial & Post Approval Study
- Medtronic Post Approval Study
- Brain Sentinel

Speaker's Bureau:

NeuroPace

Consultant:

NeuroPace

Major Shareholder:

• None

Objectives

Review neuromodulatory therapy in epilepsy and their efficacy, adverse effects and safety data for:

- Vagus nerve stimulation
- Brain responsive neurostimulation
- Deep brain stimulation of the anterior nucleus of thalamus

Neuromodulation

Targets for Stimulation

- Cerebellum
- Hippocampus
- Subthalamic Nucleus
- Caudate Nucleus
- CentroMedian Nucleus
- Anterior Nucleus of the Thalamus
- Various individualized cortical sites
- Vagus Nerve
- Trigeminal Nerve

Types of Stimulation

- Open Loop
- Closed Loop

Safety of Stimulation

- Electrical stimulation of brain tissue
 - Less than 30µC/cm²/phase

Neuro-Modulation

Versus Medicine/Surgery

- Lack typical systemic or neurological sided effects
- Stimulation related side effects
 - Intracranial stimulation
 - VNS stimulation
- Surgically implanted
 - Surgical complications
 - Battery replacement
 - Less invasive
 - Reversible

Versus Medicine/Surgery

• Improvement of efficacy over time

Nune G et al. Curr Treat Opions Neurol 2012

Parameters of Stimulation

- Anode/Cathode contacts
- Stimulation Frequency
- Stimulation Duration
- Stimulation Intensity
- Stimulation Field
- Pulse Duration

Vagus Nerve Stimulation (VNS)

VNS

- FDA approval in 1997
- Indicated for adjunctive therapy for drug resistant partial epilepsy
 - Commonly used in generalized epilepsy
 - Approved for depression
 - But not reimbursed
- In adults and adolescents over 4 years (approved June 2017)
- More than 100,000 patients implanted

Mechanism

- Unknown
- Vagus nerve parasympathetic nerve also part of the interoceptive pathway
- Stimulation ascending via brainstem nuclei and diffusely modulating cortical excitability
 - Patients with good efficacy showed decrease metabolic activity on functional imaging studies bilaterally during ON stimulation

Krishna V et al. Neurosurg Clin N Am 2016

Vagus Nerve Stimulation

Open Loop

- Optional cardiac detection (closed loop adjunct)
 - Provides stimulation to tachycardia (at least 20%)
 - AspireSR model
 - June 2015
- Patient activated by magnet
- Subcutaneous implantation
 - Generator in left subclavicular fossa
 - Electrode left vagus

Fridley J et al. Neurosurg Focus 2012

Nune G et al. Curr Treat Opions Neurol 2012

Study	No. of Cases	Seizure Type	Notes	Follow-Up	No. of Centers	Median or Mean % Seizure Reduction	% Patients w/ >50% Reduction†
Class Levidence Blinded ra	ndomiz	ed contr	ol				
Ben-Menachem et al., 1994	114	partial	high vs low stim comparison	3 mos	multi	25 vs 6	31
Handforth et al., 1998	196	partial	high vs low stim comparison	3 mos	multi	28 vs 15	23
Amar et al., 1998	►(<u>17</u>)	partial	high vs low stim comparison	3 mos	single	71 vs 6	57
Class II evidence Non-blinded randomized control							
Scherrmann et al., 2001	28	mixed	2 stim paradigms	NR	single	30 overall	45
DeGiorgio et al., 2005	61	partial	3 stim paradigms	3 mos	multi	26 overall	29
Class III evidence Prospective observational clinical studies							
Ben-Manachem et al., 1999	64	mixed		3-64 mos	single	NR	45
Parker et al., 1999	15	mixed	children w/ encephalopathy	1 yr	single	17	27
Labar et al., 1999	24	gen		3 mos	single	46	46 O
DeGiorgio et al., 2000	195	mixed		12 mos	multi	45	35 Pt
Chavel et al., 2003	29	partial		1–2 yrs	single	53	54‡ O
Vonck & colleagues, 1999 & 2004	118	mixed		>6 mos	multi	→ 5 5	50 M
Majoie & colleagues, 2001 & 2005	19	mixed	children w/ encephalopathy	2 yrs	single	20.6	21
Huf et al., 2005	40	NR	adults w/ low IQ	2 yrs	single	26	28
Kang et al., 2006	16	mixed	children	>1 yr	multi	50	50
Ardesch et al., 2007	19	partial		>2 yrs	single	25§	33§

TABLE 1: Summary of Class I, II, and III evidence of VNS efficacy in treating epilepsy*

* gen = generalized; multi = multiple; NR = not reported; stim = stimulation.

† Refers to "high" stimulation group only.

‡ At 1 year.

§ At 2 years.

Responder Rate

Therapeutic Sham TABLE 1. Stimulation parameters					
	Н	igh	Low		
Parameter	Typical	Range	Typical	Range	
Output current (mA)	1.5	0.25-3.0	1.25	0.25-3.0	
Frequency (Hz)	30	20-50	1	1-2	
Pulse Width (µs)	500	500	130	130	
On time (s)	30	30-90	30	30	
Off time (min)	5	5-10	90	60-180	
Magnet parameters	-		-		
Output current (mA)	1.5	0.5 - 3.0	0	0	
On time (s)	30	30-90	NA	NA	
Pulse width (µs)	500	500	NA	NA	

NA, Magnet output was set to 0 in the low group: no current delivered.

Seizure Free, Responder Rate, Engle Classification

Englot DJ et al. J Neurosurg 2016

TABLE 2: Seizure outcomes reported by Engel class

	Engel Class, % Seizure Decrease				
Parameter	I, 100%	II, >90%	III, 50%–90%	IV, <50%	Total*
no. of patients (%)	121 (4.6)	200 (7.6)	1012 (38.4)	1301 (49.4)	2634

* Only individuals for whom Engel classification could be determined are tallied.

Englot DJ et al. J Neurosurg 2011

Adverse Effects

TABLE 3: Incidence of adverse effects of VNS for epilepsy

Parameter	Ben-Menachem et al., 1994	Handforth et al., 1998	DeGiorgio et al., 2000	
no. of patients	114	196	195	
follow-up (mos)	3	3	12	
adverse effect (% cases)				
hoarseness	37	62	55	
cough	7	21	15	
paresthesia	6	25	15	
pain	6	17	15	
dyspnea	6	16	13	
headache	2	20	16	
infection	NR	4	6	

Serious adverse effects: Vocal cord paralysis 1%; infection 1.5%

Englot DJ et al. J Neurosurg 2011

VNS Stimulation Parameters

- Begin 0.25mA
 - Gradually increase 0.25mA steps
 - Up to 1-1.5mA or more
- Frequency 20-30Hz
- Pulse width 250-500 µs
- 30 seconds on
- 5 minutes off

- Side effect may improve
 - Reduction of pulse width to 250µs
 - Reduction of frequency to 20hz
- Improve efficacy
 - Increase duty cycle by reducing off time
 - Do not exceed 50% duty cycle

Responsive Neural Stimulation (RNS)

Responsive Neural Stimulation

- Medically refractory focal epilepsy
 - Failure of more than 2 ASD
- 18 years or older
- FDA approved 2013
- Implantation
 - Device within the skull
 - Combination of 1-2 depths or subdural strips over seizure focus
- No more than two (2) ictal onsets

- Closed loop
- Stimulation usually does not cause appreciable symptoms
- Stores ECoG
- Seizure detections algorithms programmed

The RNS[®] System

Neurostimulator and Leads

Remote Monitor

Programmer

Patient Data Management System (PDMS)

NeuroPace[®]

RNS Stimulation Parameters

- Five sequential stimulations
 - Rapid succession
 - Each two bursts
- Starting 1mA
 - Adjust up to 3µC/cm²/phase
- Pulse width 160µs
- Frequency 200 Hz
- Burst duration 100ms

- Polarity of electrodes can be configured
 - Close bipolar within electrode (+-+- and +-+-)
 - Wide bipolar across electrode (+++ and ----)
 - From electrode to generator cover

Nune G et al. Curr Treat Opions Neurol 2012

Primary Effectiveness Endpoint

75% Median Seizure Reduction at Year 7

Analysis

At least 91 days diary Constant cohort

LOCF

In year 7, 35% of patients had seizure reduction of \geq 90%

Similar response regardless of

- Number of seizure foci
- Seizure onset location
- MRI abnormality
- Prior epilepsy surgery
- Prior VNS
- Prior intracranial monitoring

Nair D. et a. Neurology 2020

Meaningful Seizure Free Periods

28% (72/256) had at least 1 period of \geq 6 months of seizure freedom

18% (47/256) had at least 1 period of \geq 12 months of seizure freedom

 These patients had an average of 3.2 years as the longest consecutive period of seizure freedom

Pivotal Study: SAEs Affecting ≥ 2.5% of Subjects, 2 Yrs Post-Implant

	% Subjects with events (# subjects)	% Subjects with Device- Related ¹ Events (# subject)		
Related to the implanted device				
Implant site infection	3.7% (7)	3.7% (7)		
Device lead revision	3.7% (7)	2.1% (4)		
Device lead damage	2.6% (5)	2.6% (5)		
Related to seizures				
Complex partial seizures increased	5.2% (10)	3.1% (6)		
Tonic-clonic seizures exacerbated	3.7% (7)	0.5% (1)		
Tonic-clonic seizures increased	3.7% (7)	2.6% (5)		
Other serious adverse events				
EEG monitoring	7.3% (14)	0.5% (1)		
Death	3.1% (6)	0.5% (1)		
Therapeutic agent toxicity ²	2.6% (5)			

 The risk for infection is 4.1% with each RNS neurostimulator procedure

- Over 1895 patient-implant years, serious device-related implant site infection was reported in 12.1%
- All but one of the infection involved only soft tissue and cultures most often indicated skin flora
- No instances of meningitis or brain parenchymal infection
- Non-seizure related hemorrhage occurred in 7 patients (2.7%)

¹ Includes device-related and device-relation uncertain

² Four related to antiepileptic medication and 1 to acetaminophen toxicity

Morrell M et al. Neurology 2011

Nair D. et a. Neurology 2020

Cognition, Mood and Quality of Life

- No adverse effects on cognition¹
 - No difference between Treatment and Sham at end of Blinded Evaluation Period
 - No deterioration in any group scores, including memory
- No adverse effects on mood²
 - No difference between Treatment and Sham at end of Blinded Evaluation Period
 - No deterioration at any time point in group scores
- Clinically significant improvements in Quality of Life³
 - Blinded Period: 36.6% Treatment; 39.1% Sham
 - Open Label: 38% 1 year; 44% 2 years

Safety SUDEP Rate

 Rate of probable or definite SUDEP combined was 2.8 per 1000 patient stimulation years (95% CI: 1.2-6.7) and 3.2 per 1000 patient implant years (95% CI: 1.4-7.0).

2.8 (95% CI: 1.2-6.7) **RNS System patients*** 6.9 Intractable epilepsy comparator** 9.3 **Epilepsy surgery** candidates** 0 2 4 6 8 10 Per 1000 Patient Stimulation Years*/ Per 1000 Patient Years**

SUDEP Rates

Nair D et al. Neurology 2020

Deep Brain Stimulation (DBS)

Deep Brain Stimulation

- DBS provides open loop stimulation
- Bilateral anterior nucleus of the thalamus stimulation
- DBS of other targets
 remains inconclusive

- Approved in Europe (September 2010), Canada (March 2012), Australia (2015)
- Approved in USA (April 2018)
 - Patients 18 years and older
 - Focal / Partial Epilepsy
 - Medically intractable (failed more than 3 AEDs)

DBS RCT and Long Term Efficacy

Romanized to receive either 5V or 0V for 3 months double blind then conversion to 5V for all subjects

*

Randomized Control Trial [*]	Total # of Seizures: decreased by 40% at 3 months in DBS group and by 15% in patient not receiving DBS	Fisher RS, et al. Epilepsia. 2010 May; 51(5):899-908
Five Year Follow up of Patients in RTC	Median percentage seizure reduction of 69%	Salanova V, et al. Neurology. 2015 Mar10; 84(10):1017-25.
Seven Year Follow up of Patients in RTC	Median percentage seizure reduction of 75%	Sandok E, et al. American Epilepsy Society Annual Meeting. 2016 Abst. 1.298.

Seizure Reduction Over Time

Median and 25th and 75th percentiles around the median

Salanova V, et al. Neurology. 2015 Mar10; 84(10):1017-25.

Variation of Response 5 Years

- Median percentage reduction of seizure 69%.
- Responder rate 68%.
- Greater than 50% increase in seizures 3%.
- Seizure free 19%.

Salanova V, et al. Neurology. 2015 Mar10; 84(10):1017-25.

DBS Serious Adverse Effects

35.5% Device Related SAE (39 out of 110 patients)

Surgical SAE

- Implant Site Infection 10%
- Leads not at target 8.2%

Sudden Unexplained Death

- 7 Deaths none device related
 - 2 Definite SUDEP
 - 1 Probable SUDEP
 - 1 Possible SUDEP

Cognitive SAE & Status Epilepticus

- Depression 37.3%
 - 41 pts of which 66% had H/O depression
 - 11.8% suicidal ideation (13 pts)
 - One completed suicide
- Memory Impairment 27.3%
 - 50% had H/O memory impairment
- Status Epilepticus 6.4%
 - 3 out of 7 pts not receiving stimulation

Salanova V, et al. Neurology. 2015 Mar10; 84(10):1017-25.

Memory and Mood in Anterior Thalamic DBS for Epilepsy

- No significant cognitive declines or worsening memory
 - Blinded phase or at 7 years
- Higher scores of executive function and attention were measured at 7 years
- Memory and depression AEs were not associated with:
 - Objective measures
 - 7 year neurobehavioral outcome
 - Worsening quality of life measures
 - Demographic
 - Seizure characteristics
 - Change in seizure frequency
 - Frequency of AEs

Tröster AI, et al. Seizure. 2017 Feb; 45:133-141.

Conclusion

- Neuromodulatory therapy in epilepsy allows for adjunctive therapy for patients who are medically intractable and are not good candidates for epilepsy surgery
- Neuromodulation appears to have improved efficacy over time
- Safety data and adverse effects are different than those related to medications or surgery